If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+60q-7200=0
a = 1; b = 60; c = -7200;
Δ = b2-4ac
Δ = 602-4·1·(-7200)
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-180}{2*1}=\frac{-240}{2} =-120 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+180}{2*1}=\frac{120}{2} =60 $
| -4x-11=28-7x | | a30=9(30)-7 | | -5b+11=-6b | | x/8-4=16/16 | | 10x+12=2(3x+4) | | x+20+5x=x–9 | | J=3(3.14)p | | 8+2(9x-15)=32 | | 0.25(4y)=0.5y-9 | | 8.31x=0.53x | | -0.5r=2.5 | | X+12x+1=x+32x+3-14 | | 2(x-2.30)=15.40 | | -0.75=-0.125x | | 5x-2+15=90 | | 4.2(0.3=x)=8.7 | | 3x+9=(x+4) | | 1/3x+4=x-5 | | -3.46y=5.78 | | 6−2(4+x)=x−14 | | 5x-10=410 | | 6−2(4+x)=x-14 | | 7d-11/6=6d+5/6 | | 2/3x^2+x=377/3 | | -18=-0.5y | | 1=0.2x-5x-2 | | x+109+x+89=90 | | -.75(2x=5)=6 | | 10m-4=-4-10m | | 2+x=15-7/8 | | 4^2+b^2=7^2 | | 20x-4=60-12x |